Get the Flash Player to see this rotator.
 


search


Robotics     UMD

Search robotics news archives

Bookmark and Share

logo



Some possibilities for configuring an ant-like microrobot.

Some possibilities for configuring an ant-like microrobot.

 

A team of Clark School faculty from the Institute for Systems Research, the Electrical and Computer Engineering Department and the Mechanical Engineering Department has won a three-year, $1.5 million National Science Foundation grant for Ant-Like Microrobots?Fast, Small, and Under Control. Assistant Professor Nuno Martins (ECE/ISR) is the principal investigator. Co-PIs are Associate Professor Pamela Abshire (ECE/ISR), Associate Professor Elisabeth Smela (ME), and Assistant Professor Sarah Bergbreiter (ME/ISR).

No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures, and actuators that can be widely leveraged in other applications.

The team will discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile microrobots that self-organize into cooperative configurations. The scope of the project involves work in:

?Distributed algorithms for distributed coordination and formation control under severe power, communication, and mobility constraints,

?Minimal electronics hardware for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits,

?Methods of locomotion and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions,

?Integrating the algorithms, electronics, and actuators into a fleet of ant-size microrobots.

These microrobots could be used for applications as diverse as search and rescue during disaster relief efforts, manufacturing, warehouse management, ecological monitoring, intelligence and suveillance, infrastructure and equipment monitoring, metrology, and medical applications such as cell manipulation and microfactories.



Related Articles:
University of Maryland Orbital Debris Education and Research Center to Host Inaugural Workshop
Bergbreiter and students win NTF Award at IROS 2011
IEEE Spectrum features story on jumping robots
New REU site to offer research opportunities in miniature robotics
Sarah Bergbreiter wins NSF CAREER Award
S.K. Gupta awarded NSF grant for autonomous optical manipulation of cells
Nikhil Chopra receives NSF grant for wireless sensor and robotic networks

September 25, 2009


«Previous Story  

 

 

Current Headlines

UMD Clark School Announces Inaugural Awards Winners

UMD UAS Test Site Receives FAA Approval to Fly

Aerospace Students Excel at 14th AIAA YPSE Conference

Support Engineering Student Initiatives Through Launch UMD

Alum Dimitris Tsakiris improves propulsion of robotic octopus

Alum Xiaobo Tan developing robotic fish to 'stalk' real fish in the Great Lakes

UMD engineers create tiny, robust rubber micro-component.

Virtual Demonstrations and Crowdsourcing Could Lead Advancements in Autonomous Robots

Brain-behavior initiative workshop draws 160 faculty, deans, adminstrators for wide-ranging discussions

UMD Clark School to Host Mpact Week: Disaster Resilience

 
 
Back to top  
Clark School Home UMD Home ISR Home