Lockheed Martin Robotics Seminar Series: Jessy Grizzle, "Feedback Control of Bipedal Locomotion"

Friday, October 25, 2013
1:00 p.m.-2:00 p.m.
1107 Kim Building (Kay Boardroom)
Salil Goyal
301 405 1009
salilg07@umd.edu

Lockheed Martin Robotics Seminar Series
Feedback Control of Bipedal Locomotion: Theory and Experiment

Note: This seminar also is the keynote address of Maryland Robotics Day.

Prof. Jessy W. Grizzle
Jerry W. and Carol L. Levin Professor of Electrical Engineering
Electrical Engineering and Computer Science; Mechanical Engineering
University of Michigan

| video |

Host
Nuno Martins

Abstract
The fields of control and robotics are working hand-in-hand to development bipedal machines that can realize walking motions with the stability and agility of a human being. Dynamic models for bipeds are hybrid nonlinear systems, meaning they contain both continuous and discrete elements, with switching events that are spatially driven by changes in ground contact. This talk will show how nonlinear control methods are enhancing the ability to achieve highly dynamic locomotion. The presented experiments will primarily focus on our past work on 2D (planar) bipedal robots; a new 3D robot is being installed at Michigan and we will show some of the preliminary results.

Biography
Jessy W. Grizzle received the Ph.D. in electrical engineering from The University of Texas at Austin in 1983 and in 1984 held an NSF-NATO Postdoctoral Fellowship in Science in Paris, France. Since September 1987, he has been with The University of Michigan, Ann Arbor, where he is the Jerry and Carol Levin Professor of Engineering. He jointly holds sixteen patents dealing with emissions reduction in passenger vehicles through improved control system design. Professor Grizzle is a Fellow of the IEEE and of IFAC. He received the Paper of the Year Award from the IEEE Vehicular Technology Society in 1993, the George S. Axelby Award in 2002, the Control Systems Technology Award in 2003, and the Bode Lecture Prize in 2012. His work on bipedal locomotion has been the object of numerous plenary lectures and has been featured in The Economist, Wired Magazine, Discover Magazine, Scientific American, Popular Mechanics and several television programs.

Audience: Clark School  Graduate  Undergraduate  Faculty  Post-Docs  Corporate 

remind we with google calendar

 

April 2024

SU MO TU WE TH FR SA
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
Submit an Event